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Learning Adaptive Policies for Autonomous Excavation
Under Various Soil Conditions by Adversarial Domain Sampling

Takayuki Osa1,2, Naoto Osajima3, Masanori Aizawa4, Tatsuya Harada1,2

Abstract—Excavation is a frequent task in construction. In this
context, automation is expected to reduce hazard risks and labor-
intensive work. To this end, recent studies have investigated using
reinforcement learning (RL) to automate construction machines.
One of the challenges in applying RL to excavation tasks concerns
obtaining skills adaptable to various conditions. When the con-
ditions of soils differ, the optimal plans for efficiently excavating
the target area will significantly differ. In existing meta-learning
methods, the domain parameters are often uniformly sampled;
this implicitly assumes that the difficulty of the task does not
change significantly for different domain parameters.

In this study, we empirically show that uniformly sampling the
domain parameters is insufficient when the task difficulty varies
according to the task parameters. Correspondingly, we develop
a framework for learning a policy that can be generalized to
various domain parameters in excavation tasks. We propose two
techniques for improving the performance of an RL method in
our problem setting: adversarial domain sampling and domain
parameter estimation with a sensitivity-aware importance weight.
In the proposed adversarial domain sampling technique, the
domain parameters leading to low expected Q-values are actively
sampled during the training phase. In addition, we propose
a technique for training a domain parameter estimator based
on the sensitivity of the Q-function to the domain parameter.
The proposed techniques improve the performance of the RL
method for our excavation task. We empirically show that
our approach outperforms existing meta-learning and domain
adaptation methods for excavation tasks.

Index Terms—Robotics and Automation in Construction, Re-
inforcement Learning, Deep Learning Methods

I. INTRODUCTION

EXCAVATION is one of the most frequent tasks in con-
struction, and automating such excavation is expected to

reduce hazard risks and labor-intensive work. To this end, the
automation of excavation has been studied for decades [1]–[4].
Recent studies have employed reinforcement learning (RL) to
obtain policies for controlling an excavator [5]–[7]. In RL, the
optimal policy that maximizes the expected return is obtained
through autonomous trials and errors [8]. Based on recent
success of RL in robotics, RL is considered as a promising
approach for automating excavation.
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Fig. 1. To obtain an adaptive policy that can be generalized to various
condition, a policy is trained more frequently on more challenging domains.

When the conditions of soil are different, the optimal plans
for efficiently excavating the target area will be significantly
different. When considering the problem of learning a policy
that can work across a set of various domains, the task
difficulties can vary among a given domain distribution. The
problem of learning a policy applicable to various domains is
often formulated as multitask RL [9] or meta RL [10], which
help obtain a policy that works in or rapidly adapts to various
domains. However, in existing meta-RL and multitask-RL
methods, the domain parameters are often uniformly sampled
during the training phase, thereby implicitly assuming that the
difficulty of the task does not change significantly for different
domain parameters. However, we have observed variance in
the task difficulty within the range of domain parameters for
excavation tasks, and policies trained by existing methods
have not performed well for domains where a task was more
difficult than in other domains.

To address this issue, we develop a framework for learning a
policy that can be generalized to various domain parameters in
excavation tasks even if there is variance in the task difficulty.
We propose two techniques for improving the performance
of an RL method in our problem setting: adversarial domain
sampling, and domain parameter estimation with a sensitivity-
aware importance weight. In the proposed domain sampling
method, the domain parameters leading to low expected Q-
values are sampled during the training phase. This approach
can be viewed as a type of adversarial training where the
agent attempts to maximize the expected return and the domain
sampler attempts to minimize the expected return. In addition,
we also propose a method for training a model to estimate the
domain parameters. In our excavation task, it is necessary to
estimate the domain parameters to adjust the policy behavior.
To this end, we propose an importance weight incorporating
the sensitivity of the Q-values to the domain parameters. Our
experimental results show that the proposed method enables
us to obtain a policy that works in various domains (includ-
ing challenging ones). Moreover, our approach outperforms
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existing methods on an excavation task.
The remainder of the paper is structured as follows. Sec-

tion III describes the related work. Section II introduces the
RL formulation and related approach. Section IV describes the
proposed method.. Section V explains the experimental results,
and Section VI describes the conclusions.

II. PRELIMINARY

A. Reinforcement Learning

We consider a Markov decision process defined by a tuple
(S,A,P, r, γ, d), where S is the state space, A is the action
space, P(st+1|st,at) is the transition probability density,
r(s,a) is the reward function, γ is the discount factor,
and d(s0) is the probability density of the initial state. A
policy π(a|s) : S × A 7→ R is defined as the conditional
probability density over the actions given the states. A return
is defined as the sum of the discounted rewards over time
Rt =

∑∞
k=0 γ

krt+k. The goal of RL is to obtain a policy that
maximizes the expected return E[R|π].

B. Meta-Learning

We consider a policy πθ parameterized with a vector θ.
The objective function for meta-learning in general can be
expressed as follows:

L(θ) = ET ∼p(T ) [E[R|πθ, T ]] , (1)

where T represents a task, and p(T ) is the task distribution
to which the meta-policy must adapt. In meta-RL, a meta-
policy is obtained by maximizing the expected return across
tasks with respect to a given task distribution. In meta-RL
methods, such as PEARL, a policy conditioned on the latent
variable is typically trained in the training phase [11]–[13].
In the test phase, the model was adapted to a task sampled
from the task distribution; however, the task descriptions
were unknown. Thus, latent variables or task descriptions
are typically estimated during the testing phase. However,
in risk-aware RL [14], maximizing the expectation does not
necessarily improve the worst-case performance. As shown
in our experiment, a policy trained with an existing meta-RL
method may not work for some of the tasks even if the average
performance across the tasks is acceptable.

C. Problem Setting in This Study

In our problem setting, we observe a depth image of the
landscape as a state s. An action a represents a single tra-
jectory for excavation. We assume that the domain parameter
zdefines the characteristic of the soil in the target excavation
area and that the transition probability p(s′|s,a; z) varies
according the domain parameter z. For example, the soil can
be hard and crumbly in certain domains while soft and sticky
in other domains. Thus, when the domain parameter z differs,
even if we take the same action under the same state, the next
state s′ can be significantly different. Our goal is to obtain
a policy for planning a trajectory to efficiently excavate the
target area under various values of the domain parameter.
To this end, we train a model conditioned on the domain

parameters that provides different excavation strategies for
different values of the domain parameters. We assume that the
values of the domain parameters are fixed during an episode.

In this study, we assume that the domain parameter z is
known during the training phase. However, in the test phase,
the domain parameter z is unknown and therefore needs to
be estimated. Considering the case where a policy is trained
in a simulation and tested in the real world, we think that
our problem setting is reasonable. Our problem setting is an
intermediate problem between multitask RL and meta-RL. In
multitask RL, the task ID or task description is provided, and
multiple tasks are solved simultaneously. In meta-RL, unlike
multitask RL, the task ID/description is not provided during
both the training and test phases. Meta-RL often learns a policy
conditioned on the latent variable [11]; thus, the latent variable
corresponding to the test task needs to be estimated online in
the test phase.

D. QT-Opt

We briefly introduce QT-Opt [15], a variant of Deep Q-
learning for tasks with a continuous action space. In QT-
Opt, the optimal Q-function is approximated by applying the
optimal Bellman operator to the approximated Q-function.
Given an approximated Q-function Qw(s,a) parameterized
with a vector w, the Q-function is updated by minimizing an
objective function as follows:

w =
∑

(si,ai)∈B

∥yi −Qw(si,ai)∥2 (2)

where B is a batch of samples selected from the replay buffer.
The target value yi is computed as follows:

yi = ri + γmax
a′

Qw′(s′,a′). (3)

In QT-Opt, the maximum Q-values are approximated using
the cross-entropy method (CEM) [16]. Unlike actor-critic
methods [17], [18], a policy is not explicitly modeled in
QT-Opt. In this study, we extend QT-Opt to a meta-learning
setting.

III. RELATED WORK

Autonomous excavation approaches can be classified
into three categories: 1) optimization-based methods [19],
2)imitation-learning-based (IM-based) methods [1], [4], and
3) RL-based methods [5]–[7]. Applying an optimization-based
approach, such as that reported in [19], allows us to realize
a robust controller.. However, the method presented in [19]
is applied to two-dimensional trajectories, and extending the
optimization-based approach to a three-dimensional space is
not trivial. Using RL for autonomous excavation can be ad-
vantageous as it requires less expert knowledge; furthermore,
it allows a policy for planning an excavation trajectory to be
established even if the dynamics of the simulator are a black
box [5]. In IM-based methods, data from human operators are
acquired and a controller is trained in a supervised learning
manner. However, compared with RL, IM-based methods
involve time-consuming and costly data acquisition processes.
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Recently, Pascal et al. applied RL to a 2D autonomous exca-
vation and demonstrated that the obtained policy is applicable
to actual excavator [7]. Lu et al. proposed to a framework
for excavating a pile of solid objects [20]. In their method, a
convolutional neural network predicted the excavation success
for a given image. Although the authors showed how their
method could be effectively applied to a real-world system,
their focus was on excavating solid objects and did not address
how to generalize to various soil conditions. Our study is built
upon a previous study in [5], which investigated an RL method
for learning to plan a trajectory for a depth image. However,
the study in [5] did not address how to deal with various soil
conditions.

In the field of RL, methods have been investigated for ob-
taining a policy applicable to various conditions. One prevalent
approach is domain randomization, in which a policy is trained
under various conditions [21]. Another approach is meta-
learning [10], [11]. Given a task distribution, the goal of meta-
learning is to obtain a policy that can rapidly adapt to a given
test domain [10]. The fundamental difference between domain
randomization and meta-learning is that although domain ran-
domization obtains a single robust policy for various domains,
in meta-learning, the policy adapted to the test domain will
be different for each domain in a few-shot adaptation. Our
problem setting is close to those of [12], [13] in the sense that
a model for estimating the domain parameters can be trained
in a supervised-learning manner. Nevertheless, the focus of
these studies was on how to generalize the locomotion policies
for the various terrains; they did not investigate the effects of
the variance of task difficulties among a set of target tasks.
In previous studies, learning methods were often evaluated in
problem settings where the task difficulty did not significantly
change among the given task distribution.

In this study, we show that it is necessary to employ a
method that explicitly incorporates the task difficulty in our
problem setting. Our approach can be seen as a type of
adversarial training, i.e., the max-min game, where the agent is
trying to maximize the expected return and the domain sampler
is trying to minimize the expected return. The concept of our
approach is similar to those of previous studies on min-max
games in adversarial training [22], [23].

IV. PROPOSED METHOD

A. Meta-QT-Opt

In this study, our aim is to obtain a policy that maximizes
the expected return across various domains. Thus, our problem
can be formulated as follows:

max
π

Ez∼p(z)Eπ,p(s′|s,a;z) [Q
π(s,a, z)] , (4)

where z is the domain parameter defining the transition
probability. p(z) is the prior distribution of z and defines the
domain distribution. The objective function in (4) can be seen
as a variant of the meta-learning objective in (1).

We extend the concept of QT-Opt [15], a variant of Q-
learning [24], [25]. In a previous study [5], QT-Opt outper-
formed TD3 [18] and SAC [17] on the excavation task. In
our framework, we approximate the Q-function conditioned
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Fig. 2. Neural network architecture for modeling Qw(s,a,z).

on the domain parameter z with a function Qw(s,a, z)
parameterized with a vector w. We update Qw(s,a, z) by
minimizing an objective function expressed as follows:

L(w) =
∑

(si,ai,s′
i,zi)∈B

∥yi −Qw(si,ai, zi)∥2 (5)

where B represents a batch of samples selected from the replay
buffer. The target value yi is computed as follows:

yi = ri + γmax
a′

min
j=1,2

Qw′
j
(s′i,a

′, zi). (6)

Here, the value of maxa′ Qw′
j
(s′,a′, zi) is approximated

using the CEM. When selecting an action a for a given state
s, the action is determined as follows:

a∗ = argmax
a

min
j=1,2

Qwj
(s,a, z). (7)

In the standard CEM, N samples are randomly generated using
the sampling distribution at each iteration and the sampling
distribution is fit to the best M samples. As in [5], we use
the sample with the highest score as the output of the CEM
instead of the mean of the best M samples. The neural network
architecture in our implementation is shown in Fig. 2.

B. Adversarial Domain Sampling

In our excavation task, there is a variance in the task
difficulty in a given task distribution. Thus, a uniform sam-
pling of the domain parameter does not result in satisfactory
performance from the policy. To address this issue, we sample
a domain parameter that minimizes the expected Q-value
during the training phase. In the proposed method, the domain
parameter z is determined as follows:

z∗ = argmin
z

∑
s∈B

max
a

min
j=1,2

Qwj (s,a, z), (8)

where B is a batch of samples selected from the replay buffer.
This technique enables us to perform trials and errors under
domain parameters for which the current policy does not
work well. Therefore, this technique allows us to improve the
worst case performance. Considering a case where a policy
π generates an action by following (7), our approach can be
seen as a way of approximately solving a problem expressed
as follows:

max
π

min
p̃(z)

Ez∼p̃(z)E(s,a)∼π,p(s′|s,a;z) [Q
π(s,a, z)] . (9)
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This formulation implies that our approach can be viewed as
a type of adversarial training with the max-min game [23],
i.e., the agent attempts to maximize the expected return and
the domain sampler attempts to minimize the expected return.
The proposed approach can also be regarded as generating an
automatic curriculum [26] based on the current estimate of the
Q-values.

In practice, the domain parameter z is either
continuous or discrete, and analytically computing
minz

∑
s∈B maxa Qw(s,a, z) is not tractable. Thus,

we uniformly generate L samples of the domain parameter
z and select the value leading to the minimum value of∑

s∈B maxa Qw(s,a, z). To maintain the balance between
exploration and exploitation during the training phase, we
use this strategy in an ϵ-greedy-like fashion; we sample
the domain parameter z uniformly with the probability ϵ;
otherwise, the domain parameter z is determined based on
(8). In our implementation, the domain parameter is sampled
in the beginning of an episode and fixed until the end of the
episode.

C. Training of Domain Parameter Estimator with Sensitivity-
Aware Importance Weight

In our problem setting, the value of the domain parameter
z is known during the training phase, but unknown in the test
phase. Thus, we need to estimate the domain parameter z from
the observed state-action pairs in the test phase. To this end,
it is necessary to obtain a model for estimating the domain
parameter. By denoting the model for estimating the domain
parameter by fϕ(si,ai, s

′
i) as parameterized by a vector ϕ,

the model can be trained by minimizing the mean squared
error as follows:

L(ϕ) =
∑

(si,ai,s′
i,zi)∈B′

∥∥zi − fϕ(si,ai, s
′
i)
∥∥2
2
, (10)

where B′ is a batch of samples selected from the latest N
samples in the replay buffer. As the policy π changes over the
training phase, the distribution over the transitions (s,a, s′)
in the replay buffer differs from that induced by the current
policy. To mitigate the covariate shift between the training
and test data distributions, we select a batch of samples from
the latest M samples instead of the entire replay buffer when
minimizing the loss in (10). In our implementation, we set
M = 10, 000.

In our preliminary experiment, we found that the estimation
of the domain parameter was the bottleneck for achieving sat-
isfactory performance. Thus, we propose training the domain
parameter estimator fϕ(si,ai, s

′
i) by using an importance

weight incorporating the sensitivity of the Q-value to the
domain parameter. In our method, the domain parameter
estimator is trained by minimizing the objective function as
follows:

L(ϕ) =
∑

(si,ai,si,zi)∈B′

wi

∥∥zi − fϕ(si,ai, s
′
i)
∥∥2
2
, (11)
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Fig. 3. Neural network architecture for fϕ(s,a, s′).

The corresponding calculation is as follows:

wi = min(wmax,max(w̄i, wmin), (12)

w̄i =

∥∥∥∇zQw(s,a, z)|s=si,a=ai,z=zi

∥∥∥
2∑

(sj ,aj ,zj)∈B

∥∥∥∇zQw(s,a, z)|s=sj ,a=aj ,z=zj

∥∥∥
2

.

(13)

Herein, wmax and wmin are the upper and lower bound for
clipping the importance weight, respectively. In our method,
we use the L2-norm of the gradient of the Q-value with respect
to the domain parameter ∥∇zQw(s,a, z)∥2 as a metric for
quantifying the sensitivity of the Q-value to the domain
parameter. When the norm of the gradient ∇zQw(s,a, z) is
large at a point, the Q-value is considered to be sensitive to the
value of the domain parameter z at that point and accurately
estimating the value of z is essential. We can incorporate
this observation using the importance weight in (13). As in
other techniques with importance weights [27], we clip the
importance weight. In our implementation, we use wmin = 0.5
and wmax = 3.0.

D. Proposed Algorithm

The proposed training procedure is summarized in Algo-
rithm 1. The domain parameter z is sampled in the beginning
of the episode and is known to the RL agent in the training
phase. In the beginning of the training, the domain parameters
are uniformly sampled. The adversarial domain sampling
strategy described in Section IV-B is used after Nadapt time
steps. The model to estimate the domain parameter is trained
in a supervised manner using the importance weight proposed
in (13).

The procedure for deploying the policy trained by Algo-
rithm 1 is summarized in Algorithm 2. The domain parameter
z is sampled in the beginning of the episode; however, its true
value is unknown to the RL agent. The domain parameter
is estimated from an observed transition (s,a, s′) using the
domain parameter estimator fϕ(s,a, s

′). Subsequently, the
action that maximizes the Q-value Qw(s,a, z) is estimated
using the CEM.

V. EXPERIMENTS

A. Simulation setup

We used a 3D excavation simulator developed by Komatsu
Ltd., as described in [5]. In the simulation, each action
represented a single trajectory of the excavator bucket. We
assumed that a controller for the excavator arm was provided.
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Algorithm 1 Meta-QT-Opt with Adversarial Domain Sam-
pling and Sensitivity-Aware Importance Weight

Input: ϵa for the ϵ-greedy action exploration, ϵd for the ϵ-
greedy exploration of the domain parameter, time steps to
activate the adversarial domain sampling Nadapt
Initialize the experience replay buffer D, the parameters for
the domain parameter estimator ϕ, and the parameters for
critics and target critics wi, w′

i for i = 1, 2.
Set the number of samples in D as N = 0
for each episode do

Generate random value x ∈ [0, 1]
if x < ϵd and N > Nadapt then

Sample the domain parameter randomly
else

Select the domain parameter using the strategy in (8)
end if
for t = 0 to T do

generate random value xa ∈ [0, 1]
if xa < ϵa then

Select action randomly
else

Select action that maximizes Qw(s,a, z)
end if
Observe reward r and new state s′

Store tuple (s,a, s′, r) in D
N ← N + 1
Sample mini-batch B from D
Update the critics by minimizing LQ(wi) in (5)
Update the target critics by w′

i ← (1− τ)w′
i + τwi

Sample mini-batch B′ from the latest N samples
Update ϕ by minimizing L(ϕ) in (11)

end for
end for

Algorithm 2 Meta-QT-Opt Meta-Testing
Input: Domain distribution for testing ptest(z)
for each episode do

Sample domain parameter z ∼ ptest(z)
for t = 0 to T do

if t = 0 then
Set ẑ = 0

else
Estimate the domain parameter ẑ = fϕ(s,a, s

′)
end if
Select action: a∗ = argmaxQw(s,a, ẑ)
Observe reward r and new state s′

end for
end for

This policy generated a trajectory for a specified controller.
The bucket trajectory was approximated as an arc, and the
action corresponded to the bucket trajectory parameter. The arc
trajectory was parameterized with a three-dimensional vector,
which was used as the action. The state was provided by a
depth image capturing the landscape in front of the excavator.
The number of observations was 65 × 84, and we used only

70
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with zero
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The color indicates the height

(b) Example of the goal state(a) Example of the initial state

Fig. 4. Initial and goal states of the excavation task. An initial state is
randomly generated in the beginning of the episode. The state is represented
as a depth map of the landscape.

TABLE I
CHARACTERISTICS OF SOILS IN TEST DOMAINS

Domain name Hardness Crumbliness
Test Domain 1 Hard Solid
Test Domain 2 Hard Crumbly
Test Domain 3 Soft Solid
Test Domain 4 Soft Crumbly

the depth information. An example of a depth image is shown
in Fig. 4. The range of the sensor was presented in sector
form, and the shape of the state was arranged in a rectangle
by filling the blank region with zeros. The reward was based
on the amount of soil removed by the previous action. For
example, if the amount of soil removed by the previous action
is 0.5 m3, then the reward is 0.5. The episode was terminated
when the amount of soil removed by the previous action
was less than a predefined threshold, i.e., when the bucket
of the excavator was almost empty. The dimensionality of the
domain parameters was nine. In our simulation, to represent
the stochastic behavior of soil, the form of the remaining soil
was collapsed stochastically. Parameters that define the degree
and probability of soil collapse were included in the domain
parameters.

To evaluate the performance of the trained policy, we used
four sets of typical domain parameters within their respec-
tive ranges. The characteristics of the four test domains are
summarized in Table I. In general, when the soil is hard,
an excavator cannot dig deeply. When the soils are crumbly,
the remaining soil in the target area can easily collapse and
tends to be relatively smooth. When the soil is hard, the
excavator bucket cannot dig deeply. Therefore, the amount
of soil that can be removed by a single action is less when
the soil is harder. Consequently, when the soil is harder,
more processes are required to completely remove the target
amount of soil. When more processes are required to complete
the task, the estimation of the Q-function becomes more
challenging because more time steps must be considered to
accurately predict the return. Additionally, the soil collapses
stochastically. If the probability of soil collapse is high, then
the prediction of return becomes uncertain, which can result in
more challenging tasks. In addition to these four test domains,
we evaluated the average return over various domains by
uniformly sampling the domain parameters.

To demonstrate the differences in the task difficulty, Fig. 5
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Fig. 5. The learning curve of QT-Opt when a policy is directly trained on
each test domain. Results on four test domains are shown, respectively. There
is a variance of the task difficulty among these four domains.

depicts the learning curves of QT-Opt on each test domain.
In Fig. 5, a policy is trained on a single domain, unlike in
meta-RL and multitask RL. As shown, learning a policy on
test domain 2 requires more iterations of trial-and-error than in
the other test domains. This result demonstrates the variance
in the task difficulty in a given task distribution. Although
the variance of task difficulty was insignificant, it significantly
affected our task, as will be discussed later.

As a baseline, we used the variant of QT-Opt proposed
in [5], which employed conservative adversarial training to
reduce the overestimation of the Q-values. We evaluated a
variant of QT-Opt in [5] with domain randomization. Below,
we refer to this baseline method as QT-Opt with domain
randomization. In addition, we evaluated a simplified version
of PEARL proposed in [11]. In PEARL, the Q-function
conditioned on the latent variable Qw(s,a, z) is estimated,
and a latent-conditioned policy π(a|s, z) is learned using SAC
as a base RL algorithm. Although the original PEARL learns
the latent variable in an unsupervised manner, we considered
with the domain parameters as the latent variable in PEARL,
and the posterior distribution was trained in a supervised-
learning manner. Thus, we refer to this variant of PEARL
as “simple-PEARL.”

B. Results

Fig. 6 shows the learning curves for the baseline methods
and proposed method. We report the average return over five
random seeds with 30 test episodes. In Fig. 6, the shaded
area represents the 90 % confidence region. Notably, policies
trained with the baseline methods do not work in test domain 2
even if the average performance across the tasks is acceptable.
In QT-Opt with domain randomization, simple-PEARL, and
meta-QT-Opt, the performance on test domain 2 evidently
does not improve appropriately during the training. This result
shows that uniform domain sampling, as often used in previous
studies, is not effective when there is significant variance in
the task difficulty among a given task distribution. In con-
trast, when using the proposed adversarial domain sampling
technique, meta-QT-Opt significantly outperformed baseline
methods. Our proposed technique successfully addresses the
above issue by actively sampling the domains where the
expected return is low. Interestingly, our adversarial domain
sampling improves the overall performance across various

domains as well as the performance on the most challenging
domain. In addition, the performance was further improved us-
ing a sensitivity-aware importance weight to train the posterior
distribution. As shown in Fig. 6(f), the mean squared errors of
the domain parameter estimated by the proposed method with
and without importance sampling did not differ significantly.
The proposed importance-sampling method aims to assign a
higher weight to the estimation accuracy at the point where
the Q-function is more sensitive to domain parameters. Thus,
using importance weighting does not significantly affect the
overall estimation error. However, as shown in Table II, the
proposed importance sampling technique improved the policy
performance.

The performances of the baseline methods deteriorated as
the training progressed. A recent study [28] showed that
Q-learning-based algorithms typically result in performance
deterioration, which is attributable to unsatisfactory feature
learning in Q-learning based on bootstrapping. Based on the
results, the proposed algorithm can mitigate the abovemen-
tioned issue; however, further investigation is required. Table II
summarizes the performances of the baseline and proposed
methods after training. The proposed method significantly
outperforms the baseline methods across the test domains.
The difference between the baseline methods and proposed
method is especially evident on test domain 2. Although the
policies trained by the baseline methods do not work well
on test domain 2, the proposed method successfully trains a
policy that works on test domain 2 as well as on the other
domains.

Fig. 7 visualizes the Q-function with different values
of the domain parameter. For the visualization, we show
maxa3

Qw(s,a, z) as the action is three-dimensional in our
excavation task. We show a depth image used as state s in
Fig. 7 (a). The plots of maxa3

Qw(s,a, z) with the values
of the domain parameter that correspond to the domain 1,
domain 2, domain 3, and domain 4 are shown in Fig. 7(b)-
(e), respectively. Different scales are used in Fig. 7(b)-(e)
to visualize the landscape of the Q-function. As shown, the
outputs of the trained model of Qw(s,a, z) change according
to the value of the domain parameter. The dense red area
corresponds to the distribution of near optimal actions in Fig. 7
and the location of the dense red area is significantly different
between test domaion 2 and the other test domains. This result
implies that different strategies were obtained for different
domains using the proposed method.

Fig. 8 shows the values of the domain parameter sam-
pled during the training with the proposed adaptive sampling
technique. For the visualization, the values of the domain
parameters are normalized to the range [−1, 1]. Among the
domain parameters, z4, z5, z6, and z7 are discrete variables.
In this study, the domain parameter was sampled uniformly
in the beginning of the training and the adversarial domain
sampling was activated after 50,000 time steps, i.e., after
approximately 800 episodes in Fig. 8. In the top row of Fig. 8,
the values near z0 = −1 and z2 = 1 are intensively sampled
after the adversarial sampling strategy is activated,implying
that these parameters significantly affect the task difficulty.
In test domain 2, which we found was the most challenging
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(a) QT-Opt with domain randomization.
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(b) Simple-PEARL.
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(c) Meta-QT-Opt with uniform domain
sampling.
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(d) Meta-QT-Opt with adversarial domain
sampling.
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(e) Meta-QT-Opt with adversarial domain
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(f) Accuracy of domain parameter estima-
tion.

Fig. 6. Learning curves of the proposed and baseline methods. (a)-(e) show the average returns of each method during training. The proposed method,
Meta-QT-Opt + adaptive sampling + IW, achieved the best performance in all of the test domains. (f) shows the accuracy of domain parameter estimation.

TABLE II
PERFORMANCE ON TEST DOMAINS AFTER 400,000 TRAINING STEPS.

QT-Opt with
Domain rand.

Simple-PEARL Meta-QT-Opt Meta-QT-Opt
+ adv. sampling

Meta-QT-Opt
+ adv. sampling
+ IW

Domain name

Test domain 1 20.8±5.1 18.2±1.3 20.9± 10.3 22.0±1.2 22.3±1.6
Test domain 2 6.4±1.4 10.2±2.3 6.8±3.9 17.5±2.3 19.5±1.0
Test domain 3 20.4±5.7 18.5±2.5 19.3±8.9 23.0±1.0 23.5±1.8
Test domain 4 17.5±6.0 16.5±2.8 16.2±7.0 20.9±1.6 22.7±1.4

Random Domain 19.1±5.9 19.4± 1.4 17.4± 7.5 22.3±1.7 23.1±1.2

domain, the values of these domain parameters are z0 = −1
and z2 = 1. This result indicates that the proposed method
actively samples the domain parameters leading to difficult
tasks. Therefore, we conclude that our approach successfully
improves the worst case performance.

VI. CONCLUSIONS

In this study, we investigated a learning framework for
planning a trajectory for automating an excavator in various
domains. Although prior works on meta-RL and multitask
RL often do not pay attention to the variance in the task
difficulty among a given task distribution, we empirically
showed that it is important to consider the variance in the
task difficulty. We proposed two techniques for improving
the performance of an RL method in our problem setting:
adversarial domain sampling and domain parameter estimation
with a sensitivity-aware importance weight. Our adversarial
domain sampling technique can be regarded as a type of
the adversarial training that can help improve the worst-case
performance. We empirically showed that the proposed method
significantly outperformed baseline methods on the excavation
task. To use the proposed framework in practical applications,

one must address the remaining challenges. For example,
the robustness of the policy against observational noise must
be guaranteed. In reality, depth images obtained from depth
sensors typically contain non-negligible noise. We will address
these remaining issues in our future studies.
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